Abstract
In this paper, we numerically investigate the fluorescence decay of Tm-doped tellurite glasses with different dopant concentrations. The aim is to find a set of data that allows the prediction of material performance over a wide range of doping concentrations. Among the available data, a deep investigation of the reverse cross-relaxation process (3F4,3F4,→3H6,3H4) was not yet available. The numerical simulation indicates that the reverse cross-relaxation process parameter can be calculated by fitting the slow decaying 3H4 fluorescence tails emitted when the pump level is almost depopulated. We also show that the floor of the 3H4 decay curve is indeed related to a second exponential constant, half the 3F4 lifetime, kicking in once the 3H4 level depopulates. By properly fitting the whole set of decay curves for all samples, the proposed value for the reverse cross-relaxation process is 0.03 times the cross-relaxation parameter. We also comment on the measurement accuracy and best set-up. Excellent agreement was found between the simulated and experimental data, indicating the validity of the approach. This paper therefore proposes a set of parameters validated by fitting experimental fluorescence decay curves of both the 3H4 and 3F4 levels. To the best of our knowledge, this is the first time a numerical simulation has been able to predict the fluorescence behavior of glasses with doping levels ranging from 0.36 mol% to 10 mol%. We also show that appropriate calculations of the reverse cross-relaxation parameter may have a significant effect on the simulation of laser and amplifier devices.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.