Abstract

Abstract These experiments indicate that softeners can influence abrasion resistance, as measured by laboratory machines, in some manner other than by altering the stress-strain properties of the rubber. One possible explanation is that the softener acts as a lubricant to the abrasive surface. Since this surface, in laboratory abrasion-testing machines, is relatively small, and comes repeatedly into contact with the rubber under test, it seems possible that it may become coated with a thin layer of softener that reduces its abrasive power. It would be interesting in this connection to try an abrasive machine in which a long continuous strip of abrasive material was used, no part of it being used more than once, so as to eliminate or minimize this lubricating effect. The fact that the effect of the softener is more pronounced on the du Pont than on the Akron-Croydon machine lends support to the lubrication hypothesis, because on the former machine the rate of wear per unit area of abrasive is much greater. Thus in the present tests the volume of rubber abraded per hr. per sq. cm. of abrasive surface ranges from 0.03 to 0.11 cc. on the du Pont machine and from 0.0035 to 0.0045 cc. on the Akron-Croydon machine. On the other hand, if the softener acts as a lubricant, it would be expected to reduce considerably the friction between the abrasive and the rubber and hence the energy used in dragging the rubber over the abrasive surface. The energy figures given in the right-hand columns of Tables 1 and 3, however, show that there is relatively little variation between the different rubbers. As a test of the lubrication hypothesis, it would be of interest to vary the conditions of test so that approximately the same amount of rubber per unit area of abrasive is abraded in a given time on both machines; this should show whether the phenomena observed under the present test conditions are due solely to the difference in rate of wear or to an inherent difference in the type of wear on the two machines. This could most conveniently be done by considerably reducing the load on the du Pont machine. In the original work on this machine the load was standardized at 8 pounds, but no figures are quoted to show how abrasion loss varies with the load. As an addition to the present investigation, it is proposed to examine the effect of this variation with special reference to rubbers containing various amounts and types of softener. Published data on the influence of softeners on the road wear of tire rubbers do not indicate anything like such large effects as are shown by the du Pont machine. This throws some doubt on the value of this machine for testing tire tread rubbers, a conclusion which is confirmed by information obtained from other workers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call