Abstract

The thermal degradation characteristics of head-to-head poly(styrene) [HHPS] should provide insight with respect to the impact of head-to-head placement on the thermal stability of traditional atactic head-to-tail polymer [HTPS]. The synthesis of head-to-head poly(styrene) must be accomplished indirectly. The head-to-head polymer is most satisfactorily obtained by dissolving metal reduction of poly(2,3-diphenyl-1,3-butadiene) [PDBD] generated by radical polymerization of the corresponding diene monomer. Full saturation of the polymer mainchain requires several iterations of the reduction procedure. Since the decomposition of poly(2,3-diphenyl-1,3-butadiene) is prominent at 374°C and that for head-to-head poly(styrene) is similarly facile at 406°C, it seemed feasible that TG of partially hydrogenated PDBD might be utilized as a convenient means of monitoring the extent of hydrogenation. This has been demonstrated for various levels of unsaturation remaining - from approximately 90 to less than 10%. Within this range the peak areas from the DTG plots of the partially hydrogenated polymer provide a good reflection of the ratio of unsaturated to saturated units in the polymer. Even low levels of unsaturation in the polymer may be detected by the asymmetry of the decomposition peak for the polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.