Abstract

Resonance enhanced multiphoton ionization (REMPI) is a powerful method for the sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in gaseous mixtures via mass spectrometry (MS). In REMPI, ions are produced by the absorption of at least two photons including defined electronic intermediate states. As a result—unlike other laser-based ionization techniques—spectroscopic selectivity is involved into the ionization process. Nevertheless, these wavelength-dependent ionization rates impede the quantification using REMPI. For this purpose, relative photoionization cross sections (relPICS) give an easy-to-use approach to quantify REMPI-MS measurements. Hereby, the ionization behavior of a single compound was compared to that of a reference substance of a given concentration. In this study, relPICS of selected single-core aromatics and PAHs at wavelengths of 266 nm and 248 nm were determined using two different time-of-flight mass spectrometric systems (TOFMS). For PAHs, relPICS were obtained which showed a strong dependence on the applied laser intensity. In contrast, for single-core aromatics, constant values of relPICS were determined. Deviations of relPICS between both TOFMS systems were found for small aromatics (e.g., benzene), which can be assigned to the differences in UV generation in the particular system. However, the relPICS of this study were found to be in good agreement with previous results and can be used for system-independent quantification.

Highlights

  • Over the past decades, the investigation of the environmental issues and health-related effects of polycyclic aromatic hydrocarbons (PAHs) has become an important research field

  • With regard to laser systems frequently used for Resonance enhanced multiphoton ionization (REMPI), we examined the corresponding wavelengths (266 nm and 248 nm) and demonstrated the system-independent quantification using two different mass spectrometric systems

  • The suitability of the inlet device was proven by comparing the theoretical and experimental concentrations of toluene, which are accessible via standard gas mixtures

Read more

Summary

Introduction

The investigation of the environmental issues and health-related effects of polycyclic aromatic hydrocarbons (PAHs) has become an important research field. Due to their high biological and ecological importance, analytical techniques for a fast and sensitive determination of these compounds are in the state of continuous improvements. Resonance enhanced multiphoton ionization (REMPI) coupled to time-of-flight mass spectrometry (TOFMS) is a powerful technique in this respect, for online measurements of PAHs in gaseous samples. In respect to the detailed information given in those publications, only a short overview is presented in this work

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call