Abstract
Chelated copper (Cu) sources, such as Cu glycinate (CuGly), may be more bioavailable relative to Cu sulfate (CuSO 4 ) when fed to ruminants under antagonistic pressure. The objective of this study was to determine the bioavailability of CuGly (GemStone Cu; Phibro Animal Health) relative to CuSO4 in steers fed a diet supplemented with 0.3% sulfur and 2mg molybdenum/kg of dry matter (DM). Sixty Angus crossbred steers (n = 12 per treatment) averaging 288 ± 4.85kg were enrolled in a 90-d study and fed a corn silage-based diet with one of five Cu supplementation strategies, including no supplemental Cu (CON), 5 or 10mg supplemental Cu from CuSO4/kg DM, and 5 or 10mg supplemental Cu from CuGly/kg DM. Steers were housed in pens equipped with GrowSafe feed bunks (GrowSafe Systems Ltd., Airdire, AB, Canada), with six steers per pen. Growth performance, liver Cu, and plasma Cu were analyzed in the MIXED procedure of SAS 9.4 (SAS Inst. Inc, Cary, NC) with orthogonal contrasts to compare CON vs. 5mg Cu/kg DM, CON vs. 10mg Cu/kg DM, 5 vs. 10mg Cu/kg DM, and CuSO4 vs. CuGly. Copper indices were regressed against Cu intake and slopes were calculated using the GLM procedure SAS. Dietary Cu supplementation did not affect steer body weights on days 0, 28, 56, or 90 (P ≥ 0.52), average daily gain, dry matter intake, or gain:feed (P ≥ 0.36). Final plasma Cu concentration did not differ between CON vs. 5mg Cu/kg DM (P = 0.79), CON vs. 10mg Cu/kg DM (P = 0.65), or 5 vs. 10mg Cu/kg DM (P = 0.39). Steers receiving CuSO4 tended to have greater final plasma Cu concentrations than those receiving CuGly (P = 0.08). Initial liver Cu concentration averaged 374mg Cu/kg DM, which is considered highly adequate. No steers reached deficient Cu status by the end of the 90-d period. Control steers had lesser final liver Cu concentrations than supplemented steers (P ≤ 0.04). Steers receiving 10mg supplemental Cu/kg DM had greater liver Cu concentrations than those receiving 5mg supplemental Cu/kg DM (P = 0.01). Copper source had no effect on final liver Cu concentrations (P = 0.57) and based on liver Cu and Cu intake the bioavailability of CuGly was similar to CuSO4 (115%; P = 0.27). The initially high Cu status and the fact that cattle did not become Cu deficient may have impacted the relative bioavailability results, and more research is needed to investigate the role initial Cu status and antagonistic pressure play in the bioavailability of chelated Cu sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.