Abstract
A precise method to determine the absorption and reduced scattering coefficients of turbid media from the spatial distribution of light has been developed. It allows <i>in vitro</i> local measurements on samples, and needs only one measurement performed by a linear CCD detector. The intensity profile of the scattered light is characterized by the maximum of the intensity and the full width at half maximum. These parameters have been related theoretically to the absorption and reduced scattering coefficients. The theoretical approach is based on Monte Carlo simulations, which are used to predict the intensity profile at the output surface. The boundary reflections and the source and detector characteristics have been taken into account. For a thickness lower than 6 transport mean free paths, significant differences have been found depending on whether a Mie or a Henyey-Greenstein phase function (with the same anisotropic factor) is used. This is of help in the determination of the validity range of the similarity relations. Very good agreement (error typically less than 5%, maximal 15%) has been found between simulations and experiments performed on microsphere suspensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.