Abstract

This paper describes the use of 210Pb and 137Cs radioactivity measurements to determine the rates of sedimentation in the Great Lakes. Cores from eight locations in Lake Michigan were chosen for examination to cover as wide as possible a range of sedimentation rates and representative sedimentary environments. The surficial 210Pb activity in the sediments varies between 7 and 23 pCi/g dry wt and its profile in each core shows the expected exponential decrease with depth consistent with the assumption of uniform sedimentation rate over the last hundred years and secular equilibrium between supported 210Pb and 226Ra (0.5-1.0 pCi/g dry wt). Companion measurements of 137Cs indicate that the coring technique satisfactorily recovered the uppermost levels of the deposit and that the mobility of both radionuclides within the sediment is probably small. Based on the limited number of cores analyzed to date, it appears that modern sedimentation rates are not very different from average rates for the last 7000 yr. The excess 210Pb appears to originate primarily from atmospheric fallout, but a further inventory of the 210Pb distribution over the lake bottom must be made to properly assess the significance of other sources. The spatial distributions of both 137Cs and 210Pb at certain stations suggest that the mode of transport of these radionuclides are comparable and involve attachment to settling particles. A mathematical model is developed which accounts for the observed limited mobility of both 210Pb and 137Cs in several of the cores in terms of post-depositional redistribution by physical or biological mixing processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call