Abstract
The excellent capability of high resolution inductively coupled plasma sectorfield mass spectrometry for measurements of the rare earth elements Th and U is demonstrated by investigating different materials such as geological matrices (sediments, soils), plant tissues and marine animal tissues. Appropriate digestion of the samples resulted in complex matrices, especially in the case of silicate containing samples. The elemental loss in silicate residues of plant material was found to be up to 30% and therefore required HF-containing digestion methods. The high concentration of matrix elements leads to spectral interferences, which are investigated by measuring the elements with different mass resolution. High mass resolution is shown to be a prerequisite for accurate determination of Sc and Y, respectively. Furthermore, effects of non spectral interferences are investigated and could be properly corrected for by using 115 In as internal standard. Moreover, the capability of a microconcentric nebulizer in combination with a membrane desolvation unit compared to a conventional microconcentric nebulizer is discussed with respect to suppression of spectral interferences. Oxide interferences could be reduced to a negligible amount, whereas it could be observed that high salt freight leads to a blockage of the membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.