Abstract

Radium (Ra) isotopes are important from the viewpoints of radiation protection and environmental protection. Their high toxicity has stimulated the continuing interest in methodology research for determination of Ra isotopes in various media. In this paper, the three most routinely used analytical techniques for Ra isotope determination in biological and environmental samples, i.e. low-background γ-spectrometry, liquid scintillation counting and α-spectrometry, were reviewed, with emphasis on new methodological developments in sample preparation, preconcentration, separation, purification, source preparation and measurement techniques. The accuracy, selectivity, traceability, applicability and minimum detectable activity (MDA) of the three techniques were discussed. It was concluded that the MDA (0.1mBqL−1) of the α-spectrometry technique coupled with chemical separation is about two orders of magnitude lower than that of low-background HPGe γ-spectrometry and LSC techniques. Therefore, when maximum sensitivity is required, the α-spectrometry technique remains the first choice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call