Abstract

Rabeprazole is one of the latest proton-pump inhibitors used for treatment of several gastrointestinal disorders. For therapeutic applications, rabeprazole has been administered as a mixture of R-(+) and S-(-) enantiomers. Owing to pharmacological and toxicological differences between stereoisomers, chiral recognition has now become an integral part of drug research and development. A simple and rapid liquid chromatographic method for enantioselective separation and determination of R-(+) and S-(-) enantiomers of rabeprazole in bulk drug and pharmaceutical formulations was developed. Chiralpak IC (150×4.6mm, 5μm) column and μmobile phase containing hexane:ethanol:ethylenediamine (30:70:0.05 v/v) in an isocratic mode yielded baseline separation with resolution greater than 6.0 at 35°C. Effects of additives and n-hexane were evaluated. Optimized condition was validated as per ICH guidelines. The method has good linearity, high sensitivity with LOD was 0.01μg/mL and LOQ was 0.03μg/mL for both enantiomers. Intra-day precision varied between 0.44 and 1.79% for S-(-) enantiomer, 0.65 and 1.97% for R-(+) enantiomer. Relative standard deviations of inter-day precision were less than 1.81% for both enantiomers. The percentage recovery for both enantiomers of rabeprazole ranged between 99.81 and 101.95%, 98.82 and 101.36% in material and tablets, respectively. The method was successfully applied to determine content of each enantiomer in commercial tablets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.