Abstract

The effect of a variety of plasma cleaning procedures on the level of bulk and interfacial contaminants in the films is analyzed by secondary ion mass spectrometry. Bulk levels of 0 have been reduced considerably by N/sub 2/ plasma cleaning, but no reproducible reductions in interfacial contamination have been achieved. A method is described of determining the gap state density N(epsilon) of a-Si:H from field effect, in which no assumptions are made about the form of the band bending in the semiconductor. The problem is reduced to three successive integrals over an assumed N(epsilon) by change of variable from distance to applied voltage and the best fit to the experimental data is obtained by iteration of the assumed state density. The method is shown to be no less rigorous and considerably more economical than the recent analysis of Goodman, Fritzsche and Ozaki. In addition, an experimental means of determining the flat-band voltage to within 5% of the maximum gate voltage V/sub g/ used is demonstrated, by finding the value of V/sub g/ for which (kT/e)dlog I/sub SD//dV/sub g/ is independent of temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call