Abstract

A procedure is described to determine from NMR data the three-dimensional structure of biomolecules. This procedure combines model building with a restrained Molecular Dynamics algorithm, in which distance information from NOEs is incorporated in the form of pseudo potentials. The method has been applied to the N-terminal DNA-binding domain or "headpiece" (amino acids 1-51) of the lac repressor from E. coli, for which no crystal structure is available. The spatial structure of the headpiece is discussed in terms of known physical and biochemical data and of its DNA binding properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.