Abstract

A simple method to calculate dissociation constants for protein-ligand interactions by partial-filling capillary electrophoresis is demonstrated. The method uses raw migration time data for the ligand and needs only additional information about capillary inner radius and the absolute amount of protein loaded. A theoretical study supported by experimental data also demonstrates that the retention of analyte in affinity capillary electrophoresis (ACE) using the partial-filling technique depends linearly on the absolute amount of selector added but is independent of both selector zone length and selector mobility. Factors such as field strength and electroosmotic flow are also cancelled out if they are kept constant. The theory is confirmed and the usefulness of the method is demonstrated by enantioseparations using alpha-acid glycoprotein (AGP) and cellulase (Cel 7A) as chiral selectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.