Abstract

The non-linearity of probes is one of the important components in gauge block calibration by the mechanical comparative method of two gauges blocks at the same nominal length. However, an advanced method for gauge block calibration is a mechanical direct measurement method of two gauge blocks showing the greatest difference in nominal length of 25 mm. This method uses a special probe based on the interferential scanning principle to produce the signals to measure the displacement. In this paper, non-linearity and error due to measurement position were investigated as they related to the accuracy of measurement results. The differences in central length of pairs of standard gauge blocks made of steel were measured by optical interferometry with the measurement uncertainty (k=2) 23 nm. Length in the range of 5 μm to 25 mm was used in the experiment. Non-linearity of the probe was evaluated by the simple linear regression model. Various factors such as origin setting point, temperature, and vibration have been analysed. In the preliminary experiment, the non-linearity, position error, repeatability and retrace error over the measuring range 25 mm are 13 nm, -18 nm, 15 nm, and 10 nm respectively. The standard uncertainty of direct measurement type caused by non-linearity is 4 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call