Abstract

Graphitic matrix material encapsulates tristructural isotropic (TRISO) coated fuel particles and is a structural component for both pebble and cylindrical fuel compacts in high temperature gas reactor (HTGR) designs. In an off-normal event involving steam exposure, the matrix material is exposed to oxidants, leading to degradation of the fuel compact and subsequent exposure of the TRISO particle fuel to oxidizing species. This study presents microstructural characterization of matrix material after exposure to high temperature (1200°C), 48 kPa steam in which the evolved microstructure demonstrated nonuniform degradation. Subsequent Raman spectroscopy determined the nature of the remaining material post-exposure. The electron microscopy characterization suggests and Raman spectroscopic analysis confirms, under off-normal conditions, the carbonized phenolic resin binder is preferentially oxidized ahead of the graphite flake filler and is responsible for the nonuniform degradation and enhanced depth of attack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call