Abstract

The rotational spectrum of n-propanol (n-CH(3)CH(2)CH(2)OH) was studied with several techniques of contemporary broadband rotational spectroscopy at frequencies from 8 to 550 GHz. Rotational transitions in all five conformers of the molecule, Gt, Gg, Gg', Tt, and Tg, have been unambiguously assigned. Over 6700 lines of the Gt, Gg, and Gg' species, for quantum number values reaching K(a) = 33 and J = 67, were fitted in a joint analysis leading to the determination of DeltaE(Gg-Gt) = 47.82425(25) cm(-1) and DeltaE (Gg'-Gg) = 3.035047(11) cm(-1). Stark effect measurements in supersonic expansion were used to further confirm the assignment. The results are compared with those for the ethanol molecule and with ab initio calculations, allowing several inferences to be drawn concerning the differences in the large amplitude torsional potential of the hydroxyl group in the two molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call