Abstract

The precession β and the dissipation parameter α of a ferromagnetic material can be considered microscopically space dependent. Their space distribution is difficult to obtain by direct measurements. In this article we consider an inverse problem, where we aim at recovering α and β from space measurements of the magnetization. The evolution of the magnetization in micromagnetism is governed by the Landau–Lifshitz (LL) equation. We first study the sensitivity of the LL equation. We derive the existence, uniqueness and stability results for the LL equation and the corresponding sensitivity equations. On the basis of the results we analyze the inverse problem. We employ the energy method and we minimize the underlying cost functional by means of the steepest descent method. We derive a convergence result for the proposed algorithm. The presented numerical examples support the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.