Abstract
Objective: Well-differentiated thyroid cancer (WDTC) is the most common thyroid malignancy and although it is curable, the risk of recurrence is high. In this study, classification algorithms based on clinicopathologic features of WDTC patients were used to determine the possible of recurrence in WDTC and to evaluate potential predictive factors, and possible biomarkers based on the optimal model were identified. Method: In this study, open access data on 383 patients with WDTC, 108 with recurrence and 275 without recurrence, were used. In order to predict recurrence in WDTC patients, features were selected using recursive feature elimination variable selection method among features and classification was performed with two ensemble learning methods (Random Forest, Adaboost). Results: Two different ensemble learning models used to classify recurrence in WDTC were Random Forest with an accuracy of 0.957, sensitivity of 0.889, specificity of 0.978, positive predictive value of 0.923, negative predictive value of 0.967, Matthews correlation coefficient of 0.878, G-mean of 0.945, F1-score of 0.906, and accuracy of 0.940, sensitivity of 0.889, specificity of 0.955, positive predictive value of 0.857, negative predictive value of 0.966, Matthews correlation coefficient of 0.833, G-mean of 0.910, F1-score of 0.873. Conclusion: According to variable importance based on the Random Forest, the 5 possible clinical biomarkers for predicting WDTC recurrence are Response, Risk, Node, Tumor, and age. In the light of these findings, patient management and treatment planning can be organized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.