Abstract

Aqueous solutions of 14C-labeled analogs of seven hydrophobic organic chemicals (HOCs) were subject to solid-phase microextraction (SPME) under static conditions to assess their multi-compartment distribution and to compare poly(dimethyl)siloxane (PDMS)–water partition coefficients ( K f values) with previously reported values. To accomplish this, a protocol for quantitative desorption of radiolabelled HOCs from SPME fibers using hexane was developed. Time series extractions indicated that loading of SPME fibers had reached steady-state by day 8 for PCBs 52, 77 and 153, phenanthrene, benzo[a]pyrene, p,p′-DDT and p,p′-DDE. The recovery of spiked radioactivity among the (residual) aqueous phase, the PDMS coating, and all remaining wetted experimental surfaces ranged between 80 and 120%. K f values based on 14C-labeled analogs were in good agreement with previously published values that were determined at (or closely approaching) equilibrium conditions and without significant chemical depletion and/or uncorrected system losses. Because it allows for the direct determination of HOCs associated with the residual aqueous and experimental surface compartments, the use of radiolabelled HOC analogs is a powerful tool in discriminating among competing sorptive compartments encountered in most SPME fiber calibration methodologies employed to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.