Abstract

Graphene-functionalized nickel foam (NF) sorbent materials were prepared and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Thermogravimetric analysis. For the separation and detection of polycyclic aromatic hydrocarbons (PAHs) in five Chinese medicine samples, namely dandelion, fructus aurantii, peppermint, mulberry leaf and embryo chrysanthemum, a method combining dispersive micro-solid phase extraction and gas chromatography-mass spectrometry (GC–MS) was developed. Four conditions affecting the extraction efficiency, such as the type of desorption solvent, the amount of sorbent, the extraction time and the volume of water sample, were optimized. The results of the methodological validation showed that NF@SiO2@G was able to adsorb PAHs well and with good reproducibility. All analytes showed good linearity in the concentration range of 20–2000 ng/mL with coefficient of determination R2≥0.9956. The limit of detection was 0.98–13.34 ng/mL, and the limit of quantification ranged from 3.25 to 44.47 ng/mL. Both the intra-day and inter-day precision were lower than 15.46%, and the spiked recoveries were in the range of 75.5–118.4%. The total contents of the 16 PAHs contained in these five Chinese herbal medicines (CHMs) were varied from 450 to 1557 µg/kg. The results indicated that the graphene-functionalized NF sorbent combined with GC–MS can effectively detect PAHs in CHMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call