Abstract

A fast and robust method for the determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry was developed, characterized, and validated. Samples of isolated DNA and exosome fractions from human ovarian (2008) and melanoma (T289) cancer cell lines were used. To keep the sample consumption to approximately 10 μl and obtain a high robustness of the system, a flow injection sample introduction system with a 4.6-μl sample loop was used in combination with a conventional pneumatic nebulizer and a spray chamber. The system was optimized with respect to signal/noise ratio using a multivariate experimental design. The system proved to be well suited for routine analysis of large sample series, and several hundreds of samples could be analyzed without maintenance or downtime. The detection limit of the method was 0.12 pg (26 pg/g) platinum. To avoid systematic errors from nonspectral interferences, it was necessary to use reagent matched calibration standards or isotope dilution analysis. An uncertainty budget was constructed to estimate the total expanded uncertainty of the method, giving a quantification limit of 2.3 pg (0.5 ng/g) platinum in DNA samples. The uncertainty was sufficiently low to study quantitative differences in the formation of Pt–DNA adducts after treatment with cisplatin using different exposure times and concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call