Abstract

Plasma-free fatty acids (FFA) are an important source of energy for a variety of tissues. Recently, there has been an increased interest in the measurement of FFA kinetics in vivo, using radiolabeled or stable isotopic tracers. Standard techniques for measurement of FFA-specific activity are relatively imprecise and have limited sensitivity. We have developed a method for determination of the concentration and specific activity of individual plasma FFA that is precise (coefficient of variation less than 2%) and sensitive (detection limit in the high femptomolar to low picomolar range). Using this method, one can measure the kinetics of three or more long-chain fatty acids simultaneously. Its sensitivity is a particular advantage if one wishes to measure low rates of FFA turnover such as are encountered during hyperinsulinemia. It has been suggested that, for optimal accuracy in the determination of substrate kinetics, the tracer should be administered in the left ventricle and mixed venous blood samples should be obtained from the right heart. We have conducted experiments in dogs which demonstrate that peripheral tracer infusion and more conventional arterial (or arterialized venous) sampling actually provide more accurate estimates of FFA turnover; this is fortunate, since intracardiac infusion and sampling are not practical for human studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call