Abstract

The photo-Hall effect in a new type of periodicp-n doping multilayer structures (superlattices) of GaAs grown by molecular beam epitaxy has been investigated. In these space charge systems electrons and holes are separated in real space. As a consequence, large deviations from thermal equilibrium become quasi-stable. Carrier generation by optical absorption occurs in these doping superlattices even at photon energies far below the gap of the homogeneous semiconductor material. The photoexcitation results in a strong enhancement of the conductivityparallel to the layers and in a substantial photovoltaic response. An increase in carrierconcentration as well as an increase in carriermobility both contribute to the observed enhancement of the conductivity under excitation. The absolute values of changes in free-carrier concentration are very large due to the manyfold active layers of the structure. The measured free-carrier mobilities depend on the population of the multilayer system. A reduction in mobility as compared to bulk material is found to be more pronounced in weakly populated systems. This finding is caused by the larger weight of the boundary regions of the total active layers where the free-carrier density is lower than the density of ionized impurities resulting in an enhanced impurity scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.