Abstract
Ultrasonic phase velocity spectroscopy is a very sensitive technique used in the measurement of material properties. In a phase velocity calculation, ambiguities can arise in the spectral phases, in the form of integer multiples of 2π rad, which, if not corrected, results in large errors. In this work, we propose a method for determining these ambiguities, more specifically, the number of 2π rad phase jumps, using the Kramers-Kronig relations, for samples exhibiting a frequency power-law attenuation coefficient. The method is based on a first estimate of the phase velocity from group velocity and attenuation coefficient that are not affected by phase jumps. This estimated phase velocity is used to obtain the number of 2π rad phase jumps, which in turn is used to calculate the corrected phase velocity. The method was tested with samples of liquids with a frequency power-law attenuation coefficient (exponent y varying from 1.5 to 2) and a solid [polymethyl methacrylate (PMMA)] with y ∼ 1 , and velocity dispersions ranging from 0 to 34 (cm/s)/MHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.