Abstract

The presence of pollutants in honey can influence honey bee colony performance and devalue its use for human consumption. Using liquid chromatography tandem mass spectrometry (LC-MS/MS), various clean-up methods were evaluated for efficient determination of multiclass pesticide contaminants in honey. The selected clean-up method was optimized and validated and then applied to perform a preliminary study of commercial honey samples from Africa. The most efficient method was primary-secondary amine (PSA) sorbent which was significantly different from the others (P <0.05; average recovery ~94 %) and was applied to analyze 96 pesticide residues in 28 retail honey samples from Kenya and Ethiopia. From our preliminary data, a total of 17 pesticide residues were detected at ~10-fold below maximum residue limit (MRL) established for food products except for malathion which was detected at almost 2-fold above its acceptable MRL. A highly efficient approach for determining pesticide residues in honey with good recoveries was developed. All residue contaminants were detected at levels well below their acceptable MRLs except malathion suggesting that the retail honey analyzed is safe for human consumption. Although PSA clean-up method was selected as the most efficient for cleaning honey samples, omitting the clean-up step was the most economical approach with potential applicability in the food industry.

Highlights

  • The presence of pollutants in honey can influence honey bee colony performance and devalue its use for human consumption

  • All residue contaminants were detected at levels well below their acceptable maximum residue limit (MRL) except malathion suggesting that the retail honey analyzed is safe for human consumption

  • An Agilent 1290 ultra high performance liquid chromatography (UHPLC) series coupled to a 6490 model triple quadrupole mass spectrometer (Agilent technologies) with an ifunnel JetStream electrospray source operating in the positive ionization mode was applied using dynamic multi-reaction monitoring (DMRM) software features

Read more

Summary

Introduction

The presence of pollutants in honey can influence honey bee colony performance and devalue its use for human consumption. Honey is composed of over 300 compounds, mostly carbohydrates (>75 %) and water (~18 %), with minor components comprising of proteins, amino acids, vitamins, antioxidants, minerals, essential oils, sterols, pigments, phospholipids, and organic acids (Bogdanov et al 2008; Kujawski and Namiesnik 2008) Whereas these diverse ranges of compounds make it a nutrient rich food commodity, they make it a highly complex analytical matrix especially when analysing the presence of trace compounds such as toxins, pesticide residues and other environmental pollutants (Kujawski and Namiesnik 2008). The presence of pesticide residues and other contaminants in honey can have adverse health effects on bees and humans, decrease the quality of honey

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call