Abstract

Sulphur hexafluoride (SF6) has potential as a transient tracer of recently ventilated water masses, as its atmospheric burden continues to increase. Northern Arabian Sea hydrography was examined using measurements of atmospheric and dissolved SF6, CFC‐11, CFC‐12 and CFC‐113. Persian Gulf Water (PGW) was characterised by its SF6 signal, and the time elapsed since its formation was evaluated by two approaches. Four ventilation age estimates were derived from SF6/CFC‐11, SF6/CFC‐12, CFC‐113/CFC‐11 and CFC‐113/CFC‐12, and their agreement at the oceanic stations confirms the validity of SF6 as a transient tracer. A second approach, of correcting SF6 partial pressure for PGW dilution by an optimal mixing model and referencing to the atmospheric SF6 chronology, provided a relative tracer age. This indicated a PGW flow of 0.016 (+/−0.003) m/s across the northern Arabian Sea, with an associated oxygen consumption of 10.1 µmol/l p.a. that exceeds tracer‐derived estimates but confirms rates derived from export flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.