Abstract

AbstractThe lattice Boltzmann method (LBM) is used to simulate the flow through an idealized proton exchange membrane fuel cell (PEMFC) porous transport layer (PTL) geometry generated using a Monte Carlo method. Using the calculated flow field, Darcy's law is applied and the permeability is calculated. This process is applied in both through‐ and in‐plane directions of the paper as both of these permeability values are important in computational fluid dynamics models of PEMFCs.It is shown that the LBM can be used to determine permeability in a random porous media by solving the flow in the microstructure of the material. The permeability in the through‐ and in‐plane directions is shown to be different and the anisotropic nature of the geometry creates anisotropic permeability. It is also found that fiber arrangement plays a large role in the permeability of the PTL. New correlations are presented for in‐ and though‐plane permeabilities of fibrous porous media with (0.6<ε<0.8). Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call