Abstract

We used Random Amplified Polymorphic DNA (RAPD) fingerprinting to address issues of paternity in two odonate species. Amplification artifacts of RAPD markers were controlled by assessing paternity patterns relative to the banding patterns generated by quantitative mixtures of DNA from putative parents ('synthetic offspring'). In the aeshnid dragonfly Anax parthenope, for which the mating histories of both males and females were unknown, we found strong evidence for complete paternity success for the contact guarding male. In the highly polygamous libellulid dragonfly Orthetrum coerulescens, we detected and quantified mixed paternity in sequentially produced offspring clutches and demonstrated that fertilization success is correlated with the duration of copulation. Our results suggest that RAPD fingerprinting is suitable to address issues of paternity in systems which are genetically uncharacterized and produce large offspring clutches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.