Abstract

Water solubilities and octanol/water partition coefficients are widely used to predict partitioning and bioconcentration phenomena for hydrophobic organic pollutants in aqueous systems. This paper is the first in a two part series describing the application of high performance reverse phase liquid chromatography (HPRPLC) for indirect estimation of these two physicochemical parameters to facilitate environmental fate and transport predictions for organic compounds. In the first part, thermodynamic factors which control partitioning processes, water solubilities, and reverse phase retention behavior are discussed, and models for interlinking these three properties are summarized. The second part presents the results of aqueous solubility and octanol/water partition coefficient predictions for a number of organic contaminants from measurements of their HPRPLC behavior, and compares the modeling capabilities of some of the theoretical partitioning/solubility equations developed in the first paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.