Abstract

An unambiguous determination of the pairing symmetry in cuprate superconductors is important in order to understand the origin of high-temperature superconductivity. By making use of the effects of pair tunneling and flux quantization, we have designed and implemented several tricrystal experiments for phase-sensitive determination of the order parameter symmetry in high-Tc superconductors such as YBa2Cu3O7 Tl2Ba2CuO6, GdBa2Cu3O7, and Bi2Sr2CaCu2O8. By using a high-resolution scanning SQUID microscope, we have made the first direct observation of spontaneously generated half-flux quanta at the tricrystal point. The half-integer flux quantum effect in various specially designed tricrystal cuprate systems provides strong evidence for d-wave pairing in high-Tc cuprates. Our various tricrystal experiments have demonstrated that this effect can be used as a general probe of the microscopic phase of the pair wavefunction in unconventional superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.