Abstract

We aimed to differentiate endometrial cancer (EC) between TP53mutation (P53abn) and Non-P53abn subtypes using radiological-clinical nomogram on EC body volume MRI. We retrospectively recruited 227 patients with pathologically proven EC from our institution. All these patients have undergone molecular pathology diagnosis based on the Cancer Genome Atlas. Clinical characteristics and histological diagnosis were recorded from the hospital information system. Radiomics features were extracted from online Pyradiomics processors. The diagnostic performance across different acquisition protocols was calculated and compared. The radiological-clinical nomogram was established to determine the nonendometrioid, high-risk, and P53abn EC group. The best MRI sequence for differentiation P53abn from the non-P53abn group was contrast-enhanced T1WI (test AUC: 0.8). The best MRI sequence both for differentiation endometrioid cancer from nonendometrioid cancer and high-risk from low- and intermediate-risk groups was apparent diffusion coefficient map (test AUC: 0.665 and 0.690). For all 3 tasks, the combined model incorporating all the best discriminative features from each sequence yielded the best performance. The combined model achieved an AUC of 0.845 in the testing cohorts for P53abn cancer identification. The MR-based radiomics diagnostic model performed better than the clinical-based model in determining P53abn EC (AUC: 0.834 vs 0.682). In the present study, the diagnostic model based on the combination of both radiomics and clinical features yielded a higher performance in differentiating nonendometrioid and P53abn cancer from other EC molecular subgroups, which might help design a tailed treatment, especially for patients with high-risk EC. (1) The contrast-enhanced T1WI was the best MRI sequence for differentiation P53abn from the non-P53abn group (test AUC: 0.8). (2) The radiomics-based diagnostic model performed better than the clinical-based model in determining P53abn EC (AUC: 0.834 vs 0.682). (3) The proposed model derived from multi-parametric MRI images achieved a higher accuracy in P53abn EC identification (AUC: 0.845).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call