Abstract

Determination of oxidative metabolism in the brain using in vivo ¹³C NMR spectroscopy (¹³C MRS) typically requires repeated blood sampling throughout the study to measure blood glucose concentration and fractional enrichment (input function). However, drawing blood from small animals, such as young rats, placed deep inside the magnet is technically difficult due to their small total blood volume. In the present study, a custom-built animal holder enabled temporary removal of the animal from the magnet for blood collection, followed by accurate repositioning in the exact presampling position without degradation of B₀ shimming. ¹³C label incorporation into glutamate C4 and C3 positions during a 120 min [1,6-¹³C₂] glucose infusion was determined in 28-day-old rats (n = 4) under α-chloralose sedation using localized, direct-detected in vivo ¹³C MRS at 9.4T. The tricarboxylic acid cycle activity rate (V(TCA)) determined using a one-compartment metabolic modeling was 0.67 ± 0.13 μmol/g/min, a value comparable to previous ex vivo studies. This methodology opens the avenue for in vivo measurements of brain metabolic rates using ¹³C MRS in small animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.