Abstract

The degrading effect of laser cutting on steel sheet material, and thus on the material's magnetic characteristics, is much less understood than that of mechanical cutting. Furthermore, the degrading influence on the magnetic properties is still difficult to determine. This paper focuses on the modeling of the degrading influence of laser cutting on the magnetic properties of electrical steel sheets. As the degradation depth and the degradation profile are still difficult to define, a method is needed, which takes the effect of laser cutting into account, but without the need of knowing the degradation profile exactly. This paper shows that a method that does not require any information on the physical phenomena that are introduced by the cutting process and that has already been verified for mechanically cut samples can also be applied to laser-cut samples, although the deterioration mechanisms and the resulting degradation profile and depths differ. Magnetic characteristics are identified for two different material zones and subsequently inserted into a finite-element model, which accounts for arbitrary geometries. The simulation results for the influence of laser cutting on the magnetic characteristics of the stator lamination stacks are verified by measurements, including three different materials and frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.