Abstract

SummaryIn this study, single-walled carbon nanotubes (SWNTs) were used to determine organochlorine pesticides (chlorothalonil and pentachloronitrobenzene) in water using dispersive solid-phase extraction (DSPE), followed by gas chromatography (GC). The optimal adsorption conditions were determined by analyzing the effect of adsorbent dosage, adsorption time, eluent type and volume, and elution time. Under the optimal conditions, a good linearity was obtained at concentrations from 10 to 400 μg L−1 with correlation coefficients ranging from 0.9991 to 0.9986. The limits of detection (LOD) for the two organochlorine pesticides were 0.025 and 0.049 μg L−1, and the limits of quantification (LOQ) were 0.080 and 0.156 μg L−1, respectively. The accuracy of the proposed method was evaluated by measuring the recovery of the spiked samples, which ranged from 82.5% to 110.5% at spiking levels of 0.5–10 μg L−1 with relative standard deviations lower than 5.6% (n = 6). This method was successfully applied to determine the target analytes in canal water, drinking water, and water taken from the inlets and outlets of a wastewater treatment plant. The results demonstrate that the developed method has great potential for determining the two organochlorine pesticides in water samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call