Abstract

A sensitive method for simultaneous determination of organic and inorganic mercury species has been developed and is presented in this study. The method is based on complex formation of mercury species with the emetine dithiocarbamate (emetine-CS2) ligand, HPLC separation, and tris(2,2′-bipyridine)ruthenium(III) chemiluminescence detection. The complexation reactions of the mercury species and emetine-CS2 ligand occurred instantaneously upon the addition of emetine-CS2 solution to the solution containing the mercury species. The complete separation of these complexes was achieved using an ODS column with 20 mM NaH2PO4-acetonitrile (52:48, v/v) containing 30 mM NaClO4 as an ion-pair reagent. The calibration graphs of these complexes were linear in the range from 1–100 µg/L. The detection limits were 0.27 µg/L, 0.33 µg/L, 0.39 µg/L, and 0.17 µg/L for methylmercury, ethylmercury, phenylmercury, and the mercury ion, respectively, at a signal-to-noise ratio of 3. The developed technique was validated by analyzing certified reference materials, CRM7402-a (cod fish, NMIJ) and CE464 (tuna fish, ERM), in combination with sonication-assisted acid leaching and liquid-liquid extraction. The emetine-CS2 ligand has been used for extraction, separation, and detection of mercury species. The results determined using the proposed method were in good agreement with the values of the certified reference materials. The MeHg+ and EtHg+ recoveries for the spiked samples were found to be almost 100%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.