Abstract

Skidding is a typical behavior of high-speed angular contact ball bearings. Studies show that the effect of preload on bearing skidding and thermal characteristic is essential but insufficient. This paper proposed a comprehensive mathematic model to predict the skidding behavior of ball bearing, and the influences of the interactions between ball and raceways, cage and lubricant have been taken into consideration. Based on the proposed model, the bearing heating generation was calculated and the effects of skidding on bearing heating and temperature rise were analyzed. For validation proposes, a hydraulic variable preload experimental setup has been built, and the temperature rise of bearing outer rings under different preloads and speeds was collected and analyzed. The results indicated that at high speeds, the skidding has a significant negative effect on bearing temperature rise, and a proper preload can effectively prevent skidding and decrease temperature rise. Therefore, for a high-speed spindle-bearing system, an optimum preload that produced the minimum temperature rise can be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.