Abstract

The transmitter and receiver positions of a bistatic radar are highly influential on its performance in radar target identification since the radar cross-section of a target varies with these positions. In this study, radar target identification performance using calculated bistatic scattering data for three full-scale models and measured data for four-scale-model targets is analyzed and compared. FFT-based CLEAN is used for shift-invariant feature extraction from the bistatic scattering data of each target, and a multilayered perceptron neural network is used as a classifier. The optimum receiver position is found by comparing the calculated identification probabilities while changing the position of the bistatic radar receiver. The identification results using calculated data and measured data show that an optimally positioned bistatic radar yields better identification results, demonstrating the importance of the positions of the transmitter and receiver for bistatic radar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.