Abstract

In this manuscript we derive the Cramér-Rao Lower Bound (CRLB) of the monoexponential diffusion-weighted signal model under a realistic noise assumption, and propose a formulation to obtain optimized sets of b-values that maximize the noise performance of the Apparent Diffusion Coefficient (ADC) maps given a target ADC and a signal-to-noise ratio. Therefore, for various sets of parameters (S0 and ADC), signal-to-noise ratios (SNR) and noise distribution, we computed optimized sets of b-values using CRLB-based analysis in two different ways: (i) through a greedy algorithm where b-values from a pool of candidates were added iteratively to the set, and (ii) through a two b-value search algorithm were all two b-value combinations of the pool of candidates were tested. Further, optimized sets of b-values were computed from synthetic data, phantoms, and in-vivo liver diffusion-weighted imaging (DWI) experiments to validate the CRLB-based analysis. The optimized sets of b-values obtained through the proposed CRLB-based analysis showed good agreement with the optimized sets obtained experimentally from synthetic, phantoms, and in-vivo liver data. The variance of the ADC maps decreased when employing the optimized set of b-values compared to various sets of b-values proposed in the literature for in-vivo liver DWI, although differences of notable magnitude between noise models and optimization strategies were not found. In addition, the higher b-values decreased for lower SNR under the Rician noise distribution. Optimization of the set b-values is critical to maximize the noise performance (i.e., maximize the precision and minimize the variance) of the estimated ADC maps in diffusion-weighted MRI. Hence, the proposed approach may help to optimize and standardize liver diffusion-weighted MRI acquisitions by computing optimized set of b-values for a given set of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.