Abstract

In Poland, as well as in the whole world, advanced pollution dispersion models are playing an increasingly important role, as they take into account the diversity of terrain relief and land use in calculations in the adopted computational grid. One of them is the CALPUFF modeling system, which is a multi-layered air pollution dispersion model simulating the impact of time-varying meteorological parameters on the transport of pollutants. U.S. Environmental Protection Agency (U.S. EPA), in their guidelines on air quality modeling, prefer using this model to assess the transport of pollutants over long distances [1]. This model is supported by a group of geophysical preprocessors preparing terrain information and meteorological preprocessors, as well as a meteorological processor CALMET [2, 3]. CALMET / CALPUFF software is being systematically developed and improved, as evidenced by the approval of the upgrade from version 5.8 to version 5.8.4 by the EPA on the 4

Highlights

  • The aim of this study is to identify widely-available optimal spatial data that can be used in the modeling process of pollutant dispersion in the air, conducted using the CALMET / CALPUFF model

  • The development of remote sensing and geoinformatics tools contributed to generating new data resources, which reflect the terrain and the manner of land use more accurately. These data are applied in calculating the dispersion of pollutants in the ambient air using the CALMET / CALPUFF model

  • The data of the GTOPO30 digital elevation model and the Global Land Cover Characterization (GLCC) land use have a global reach, and despite lower accuracy, they allow for modeling at a macro scale using a rare computational grid

Read more

Summary

Introduction

Despite the continuous improvement of survey methods and advances made in suIrnvPeyolaeqnudi,pams wenetlltaeschinnothloegwy,htohle weloimrldin,aatdiovnanocfedouptolilelrustisotnilldrisepmearsiniosnamn oisdseules taorde apyl.aWyinhgenapneirnfocremaisninggalny aimdjpuostrmtaennttroonlee, oafstetnheaysstuamkeesinatovearcycsoiumnptltehperdobivaebrislity dofistterrirbauitniorneloieffearnrodrsla, nsudcuhsaesina ncaolrcmulaaltdioinstsribnutthioena.dIonpctleadssciocaml pstuataisttiiocnsatlhgercidor. LTshiims uisl,aitninfgactth, eofitmenpancottothf etimcaes-ev,aarsytihneglmaregteeoerroolorsgioccaclupracroanmsiedtersaobnlythme otraenosfpteonrtthoafnptohlleuntaonrtms.aUl d.Sis. tErinbvuitrionmweonutaldl Psurogtgeecsttio. Brelupnardienrgs itnermraeiansuinrifnogrm, inatcioornrecatnpdoimntetneuomrobloegriincgal, eprrreoprrsomceasdsoerds,uarisngwdelaltascoapmyientgeoertco.lo[1g2ic].al processor CALMET [2, 3]. CALMET / CALAPUlthFoFusgohftwthaerreeiesxbiestisnga swysidteemraatnicgaelloyfdleitveerlaotpuered caonndceimrnperdovweidth, agsreovsisdernrcoerds dbyettehcetioanpparnodvaelimofinthaetiuonp,gtrhaidsesufrrovmeyvinegrspiornob5l.e8mtoisvsetrislliobnei5n.g8.d4ibscyutshsedE.PTAheorne tahre m4thaDnyecseom-cbaellred20m13e.thTohdesernotbituystreasgpaoinnsstibthlee fionr tuheencdeevoef lgorpomsseenrtrorfst,hwehmicohdcealnisgethneeArtamlloysbpehderiivcidSetuddiinetsoGtwroougpr(oAuSpGs.), acting under TRC Environmental Corp. TIhnethoeutclaylicnuglaotibosnerovfatthioentshroene-tdhiem neanlsrieosnualltmofetheoercoolomgpicuatlagtiroidnsobf ythme wodinifdyisnpgeeodf tahnedodbisreercvtiaotnio,nitwtaekiegshitns.to account: the kTinhemseactiocntderorafinthefmfecctosn, saicsctosrodfinmgettohothdes awphperroexirmesautilotsn, boybtLainueadnbdyYtohcekele[a5s]t, tseqrurarinesbaldojcuksitnmgeenftfeacrtesatnoaalyirsemdawssithflothwe upsaeraomf settaetriiszteicdalbtyestths.eInlotchaelsFermouedtheondusmanbideern[t6i ] eadndoustlloiepreisflroewmsovfreodmfrtohme thhiellsdadteatseertm. TAatfioewns,coasmwmeollnalys used methods of these groups are presented below

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call