Abstract

The global manufacturing trend is now focusing towards miniaturization. Microminiature Powder Injection Molding (μPIM) is a viable technology to fabricate complex and high performance miniaturized components. The μPIM technique was used to produce the near-net shape micro components in this study. Fine stainless steel powder with particle size of 5μm was mixed with a ternary water-based binder system. Micro dumbbells with the largest dimension of 9mm were replicated. In order to obtain successful and well molded micro dumbbells, the Design of Experiments (DOE) technique was applied to investigate the optimal parameters in injection molding process. Injection parameters such as injection pressure (A), injection temperature (B), powder loading (C), mold temperature (D), injection time (E) and holding time (F) were optimized by using stainless steel feedstocks. Taguchi approach is chosen and the results were evaluated with signal-to-noise (SN) ratio and analysis of variance (ANOVA). The results show that the feedstocks could be replicated by using μPIM method with the application of Taguchi approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.