Abstract

The wind tower block is welded with the flange to assemble the wind tower. The inherent strain due to local heating and cooling of the weld affects the flatness of the flange. Therefore, line heating is performed to satisfy the design criteria of the flange flatness, but the work variables depend on the operator's empirical judgment. This study proposed a method to determine the optimum linear heating conditions to control the welded flatness of wind tower blocks and flanges. A proposed method uses the inherent strain method, a simple analysis method, and the optimization is performed based on the deformation superposition method. The changes in flange flatness due to welding and single-point heating were calculated. Then, the flatness change due to single-point heating is superimposed with a scale factor, which represents the magnitude of line heating, and is added to the flatness change due to welding. Using the optimization procedure, the line heating conditions used to derive the flatness that satisfies the design criteria were derived and applied to the analytical model for verification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.