Abstract

The purpose of this study was to compare CT image quality for evaluating urolithiasis using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR) according to various scan parameters and radiation doses. A 5 × 5 × 5 mm(3) uric acid stone was placed in a physical human phantom at the level of the pelvis. 3 tube voltages (120, 100 and 80 kV) and 4 current-time products (100, 70, 30 and 15 mAs) were implemented in 12 scans. Each scan was reconstructed with FBP, statistical IR (Levels 5-7) and knowledge-based IMR (soft-tissue Levels 1-3). The radiation dose, objective image quality and signal-to-noise ratio (SNR) were evaluated, and subjective assessments were performed. The effective doses ranged from 0.095 to 2.621 mSv. Knowledge-based IMR showed better objective image noise and SNR than did FBP and statistical IR. The subjective image noise of FBP was worse than that of statistical IR and knowledge-based IMR. The subjective assessment scores deteriorated after a break point of 100 kV and 30 mAs. At the setting of 100 kV and 30 mAs, the radiation dose can be decreased by approximately 84% while keeping the subjective image assessment. Patients with urolithiasis can be evaluated with ultralow-dose non-enhanced CT using a knowledge-based IMR algorithm at a substantially reduced radiation dose with the imaging quality preserved, thereby minimizing the risks of radiation exposure while providing clinically relevant diagnostic benefits for patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.