Abstract

Photon counting detector (PCD) based multi-energy CT is able to generate different types of images such as virtual monoenergetic images (VMIs) and material specific images (e.g., iodine maps) in addition to the conventional single energy images. The purpose of this study is to determine the image type that has optimal iodine detection and to determine the lowest detectable iodine concentration using a PCD-CT system. A 35 cm body phantom with iodine inserts of 4 concentrations and 2 sizes was scanned on a research PCD-CT system. For each iodine concentration, 80 repeated scans were performed and images were reconstructed for each energy threshold. In addition, VMIs at different keVs and iodine maps were also generated. CNR was measured for each type of images. A channelized Hotelling observer was used to assess iodine detectability after being validated with human observer studies, with area under the ROC curve (AUC) as a figure of merit. The agreement between model and human observer performance indicated that model observer could serve as an effective approach to determine optimal image type for the clinical practice and to determine the lowest detectable iodine concentration. Results demonstrated that for all size and concentration combinations, VMI at 70 keV had similar performance as that of threshold low images, both of which outperformed the iodine map images. At the AUC value of 0.8, iodine concentration as low as 0.2 mgI/cc could be detected for an 8 mm object and 0.5 mgI/cc for a 4 mm object with a 5 mm slice thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call