Abstract
The objective was to test the hypothesis that the optimal cryoprotective agent for cryopreservation of human spermatozoa would be a solute for which cells have the highest plasma membrane permeability, resulting in the least amount of volume excursion during its addition and removal. To test this hypothesis, theoretical simulations were performed using membrane permeability coefficients to predict optimal procedures for the addition and removal of a cryoprotectant. Simulations were performed using data from four different cryoprotectants: (i) glycerol, (ii) dimethyl sulphoxide, (iii) propylene glycol and (iv) ethylene glycol. Thermodynamic formulations were applied to determine approaches for the addition and removal of 1 M and 2 M final concentrations of cryoprotectant, allowing the spermatozoa to maintain a cell volume within their osmotic tolerance limits. Based on these data, ethylene glycol was predicted to be optimal for minimizing volume excursions among the solutes evaluated. These predictions were then experimentally tested using glycerol as the control cryoprotectant and ethylene glycol as the experimental cryoprotectant. The results indicate that there was a higher (P < 0.05) recovery of motile spermatozoa after cryopreservation when using 1 M ethylene glycol than with 1 M glycerol, supporting the hypothesis that use of the cryoprotectant for which the cell has the highest permeability will result in higher cell survival.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.