Abstract

Build orientation determination is one of the essential process planning tasks in additive manufacturing since it has crucial effects on the part quality, post-processing, build time and cost, etc. This paper introduces a method based on fuzzy multi-attribute decision making to determine the optimal build orientation from a finite set of alternatives. The determination process includes two major steps. In the first step, attributes that are considered in the determination and heterogeneous relationships of which are firstly identified. A fuzzy decision matrix is then constructed and normalised based on the values of the identified attributes, which are quantified by a set of fuzzy numbers. In the second step, two fuzzy number aggregation operators are developed to aggregate the fuzzy information in the normalised matrix. By comparing the aggregation results, a ranking of all alternative build orientations can then be generated. Two determination examples are used to demonstrate the working process of the proposed method. Qualitative and quantitative comparisons between the proposed method and other methods are carried out to demonstrate its feasibility, effectiveness, and advantages.

Highlights

  • Additive manufacturing (AM), which is commonly known as three-dimensional (3D) printing, refers to the processes of accumulating materials layer upon layer to 3D objects from 3D model data (ISO/ASTM 52900 2015)

  • A quantitative comparison among different optimal build orientation (OBO) determination methods can be carried out using the same benchmark

  • A method for determining the optimal build orientations from a finite set of alternatives is proposed based on fuzzy multi-attribute decision making

Read more

Summary

Introduction

Additive manufacturing (AM), which is commonly known as three-dimensional (3D) printing, refers to the processes of accumulating materials layer upon layer to 3D objects from 3D model data (ISO/ASTM 52900 2015). Process planning for AM is the use of specific techniques to generate the process plans for building a part, which mainly include build orientation, support structure, 3D model slicing, and tool-path, according to the 3D model data of the part (Kulkarni et al 2000; Ahsan et al 2015; Liang 2018). It consists of a set of successive preparation steps before building the part, and determine the build orientation is the first step.

Related work
Method
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.