Abstract

During reproductive life, only a selected few ovarian follicles mature and ovulate, while the vast majority of follicles undergo a degenerative process called atresia. Recent studies have indicated that follicular atresia is mediated through apoptosis of follicular granulosa cells. The objectives of the present study were to determine the time of onset of apoptosis in granulosa cells of preovulatory follicles and to evaluate the consequences of gonadotropin withdrawal on mitogen-activated protein (MAP) kinase activities. Bonnet monkeys (Macaca radiata) undergoing controlled ovarian stimulation cycles were utilized for stimulation of multiple follicles, and granulosa cells were retrieved from preovulatory follicles at 24, 48, 72, and 96 h after stopping gonadotropin treatment. Serum and follicular fluid estradiol concentrations were highest at 24 h but declined precipitously (P < 0.05) to reach the lowest concentrations at 96 h; however, progesterone concentrations during this period did not increase, indicating the absence of luteinization. Quantitative analysis of genomic DNA by 3'-end labeling revealed the presence of low-molecular-weight fragments from 48 h onward, but by agarose gel electrophoresis, DNA laddering could be visualized only after 72 h. Messenger RNA expression for Bax, caspase-2, and caspase-3 increased with the onset of apoptosis. Immunoblot analysis of MAP kinases in lysates of granulosa cells (48-72 h) indicated increased (P < 0.05) levels of phosphorylated extracellular response kinase-1 and -2, Jun N-terminal kinase (JNK)-1 and -2, and p38. However, in vitro kinase assay data indicated that only phospho-JNK and -p38 activities were higher at 72 h compared to 24 h. These results demonstrate that granulosa cells of preovulatory follicles undergo apoptosis and that increased activities of phospho-JNK and -p38 are correlated with apoptosis in the primate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.