Abstract
A new computationally assisted diagnostic to measure NO densities in atmospheric-pressure microplasmas by Optical Emission Spectroscopy (OES) is developed and validated against absorption spectroscopy in a volume Dielectric Barrier Discharge (DBD). The OES method is then applied to a twin surface DBD operated in N2 to measure the NO density as a function of the O2 admixture (0.1%–1%). The underlying rate equation model reveals that NO(A2Σ+) is primarily excited by reactions of the ground state NO(X2Π) with metastables N2(A3Σu+).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.