Abstract

The objective of this study was to develop an efficient and sensitive analytical protocol for the determination of nitrated polycyclic aromatic hydrocarbons (NPAHs) in aerosol samples. The separation of 16 NPAH (mono-and dinitro-PAH) was achieved by reversed-phase high-performance liquid chromatography (HPLC) followed by on-line reduction of the NPAHs to their corresponding amino polycyclic aromatic hydrocarbons (APAHs) and quantification by fluorescence detection. The main factors affecting the on-line reduction efficiency, such as the flow rate, the temperature, the position and packing of the reduction column were evaluated and optimised. The optimal conditions obtained were: packing of the reduction column with Pt-Al(2)O(3); a reduction column oven temperature of 90 degrees C; a flow rate of 0.8 mL min(-1). The resulting detection limits of the method ranged between 0.06 (2 NN) and 1.25 microg L(-1) (1.8 DNN), with an uncertainty of about 6%. The lifetime of the reduction column was identical to that of a typical analytical column. This analytical method was applied to particulate matter samples collected during December 2005 and August 2006 in Strasbourg (Alsace, eastern France). The NPAH concentrations observed for this urban site showed that the compounds are more abundant during winter (average of 534 pg m(-3)) than during summer (average of 118 pg m(-3)). 1-Nitropyrene was the predominant NPAH species, independent of season.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.