Abstract

We present an extension of work in an earlier paper showing high precision comparisons between black hole perturbation theory and post-Newtonian (PN) theory in their region of overlapping validity for bound, eccentric-orbit, Schwarzschild extreme-mass-ratio inspirals. As before we apply a numerical fitting scheme to extract eccentricity coefficients in the PN expansion of the gravitational wave fluxes, which are then converted to exact analytic form using an integer-relation algorithm. In this work, however, we fit to individual $lmn$ modes to exploit simplifying factorizations that lie therein. Since the previous paper focused solely on the energy flux, here we concentrate initially on analyzing the angular momentum flux to infinity. A first step involves finding convenient forms for hereditary contributions to the flux at low-PN order, analogous to similar terms worked out previously for the energy flux. We then apply the upgraded techniques to find new PN terms through 9PN order and (at many PN orders) to $e^{30}$ in the power series in eccentricity. With the new approach applied to angular momentum fluxes, we return to the energy fluxes at infinity to extend those previous results. Like before, the underlying method uses a \textsc{Mathematica} code based on use of the Mano-Suzuki-Takasugi (MST) function expansion formalism to represent gravitational perturbations and spectral source integration (SSI) to find numerical results at arbitrarily high precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.