Abstract
The human N-acetyltransferase 2 enzyme, encoded by the NAT2 gene, plays an important role in the metabolism of isoniazid, the main drug used to treat tuberculosis. The interindividual variation in the response of patients to drug treatment for tuberculosis may be responsible for the occurrence of unfavorable outcomes. The presence of polymorphisms in genes associated with the metabolism and transport of drugs, receptors, and therapeutic targets has been identified as a major determinant of this variability. The objective of this study was to identify the genetic profile of NAT2 in the study population. Using the obtained genomic DNA followed by PCR amplification and sequencing, the frequency of nine SNPs as well as alleles associated with slow (47.9%), intermediate (38.7%), and fast acetylation phenotypes (11.3%), in addition to those whose phenotype has not yet been characterized (2.1%), was estimated. The NAT2*5B allele was identified more frequently (31.3%). The description of SNPs in pharmacogenes and the establishment of their relationship with the pharmacokinetics of an individual offer an individualized approach that allows us to reduce the unfavorable outcomes of a therapy, ensure better adherence to treatment, prevent the emergence of MDR strains, reduce the cost of treatment, and improve the quality of patients' lives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.